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We study various three-dimensional supersymmetric Maxwell Chern-Simons solitons by using type 1IB
brane configurations. We give a systematic classification of soliton spectra such as topological BPS vortices
and nontopological vortices in alV=2,3 supersymmetric Maxwell Chern-Simons system via the branes of
type 1IB string theory. We identify the brane configurations with the soliton spectra of the field theory and
obtain nice agreement with field theory aspects. We also discuss possible brane constructions for BPS domain
wall solutions.[S0556-282(199)01118-3

PACS numbd(s): 11.25.Sq, 11.10.Kk

I. INTRODUCTION gives V=3, 2, 1 supersymmetric Maxwell Chern-Simons
theory, where the\'=3 case[8,9] is not much known al-
The recent developments in nonperturbative string theothough it is interesting.
ries have provided new powerful tools to understand super- A/=2 supersymmetric Maxwell Chern-Simons theory is
symmetric gauge theorigd]. The low-energy dynamics of comparably well known and its soliton solutions have been
the D-branes is described by supersymmetric gauge theorigdnsiderably studied over the yedrs0—13. Whereas the
which can be related to the ground-state excitations of funMaxwell-Higgs model supports only electrically neutral vor-
damental strings connecting pairs of D-bran@. The tices as topologically stable soliton solutiofist], the addi-
Bogomol'nyi-Prasad-SommerfieldBPS brane configura- tion of the Chern-Simons term gives rise to topologically
tions in the background led to many exact results on the&table solutions that are electrically charged and carry mag-
vacuum structure of supersymmetric gauge theories. netic flux and nonzero angular momentyb,16. In this
The novel aspects of three-dimensional supersymmetritheory, there exist topological as well as nontopological BPS
gauge theories can be understood via type 1I1B brane configunultisoliton solutions since, in three dimensions, the super-
rations, in which D3-branes are suspended between twpotential allows symmetry broken and unbroken vajcl.
Neveu-Schwarz five-brane@NS5-branek [3,4]. This con-  Thus, there can be a peculiar solution known as(tbpo-
struction gives an explanation of mirror symmetry in threelogical) domain wall which is a one-dimensional object in
dimensions via SL(Z) duality of type IIB string theory. three dimension$16,17). In crossing the domain wall, the
This mirror symmetry is also true for BPS vortices and ex-vacua are different on two sides. In addition, it is known that
changes particles and vorticgs6]. there can also béontopological domain walls residing in
Recently three-dimensional gauge theories have beethe symmetric phasd46,17. In this paper we will discuss
studied and classified by using more general type IIB bran@ow these kinds of topological objects can be described in
configurations, in which D3-branes are suspended betweerms of the above brane configurations.
an NS5-brane and g(q)5-brane[7]. In these brane con- The organization of the paper is as follows. In Sec. Il, by
figurations, three-dimensional field theories, in generalusing a similar method as in Refs,18], we classify BPS
turned out to be supersymmetric Maxwell Chern-Simonsconfigurations consisting of relatively rotated two M5-branes
gauge theories withV=4, 3, 2, 1 supersymmetry\'=4  with N, M2-branes in between and; M5-branes as well as
supersymmetry can only be realized in the NS5-D3-NShother M2-branes corresponding to solitons in three dimen-
configuration, which gives supersymmetric QED without asions. We identify possible supersymmetry for each M-brane
Chern-Simons term. The NS5-D3,Q)5 configuration configuration. These are then transformed to the brane con-
figurations in type IIB string theory after compactifying the
M-theory and then applying T-duality. This construction will
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plausible candidate for the BPS domain wall constructed in 21131141 [5
field theory[16,17, we have not been able to identify an |V|5"( 71 17| 8] 9l | (N
appropriate configuration for a finite energy density solution. 0~ St Cen T ap

In Sec. Ill, we study topological BPS vortices as well as
nontopological vortices by using the M-brane configurations
constructed in Sec. Il. We compare the brane configurations
with the soliton spectra already known from field theories
and obtain a nice agreement with field theory results. In Sec.
IV, we summarize our main results and give qualitative ar-
guments on the topological as well as nontopological BPS
domain wall solutions. We also discuss mirror symmetry for
the solitons, and indicate future directions.

After the completion of this paper, we were informed
from Ohta[19] that he also independently arrived at similar

results on the moduli space of vacua in the theories consighere the vertical line in the M2-brane world volume de-
ered here. notes that the sixth direction is bounded by the two M5-

branes, and the vertical arrays in the second’Mgane
world volume indicate that the brane is rotated along the

. . . planes by the indicated angles. The 2necessary for our
The authors of Ref[7] examined three-dimensional purpose but was not in Ref7]. These branes impose the

gauge dynamics by using type IIB brane configurationsfollowing constraints on the Killing spino¢ [18]
They obtained these from the M-theory configurations of

M2-branes suspended between two M5-branes at afitfigs

M5: (01789 ),

M2:(02a),

Il. BPS BRANE CONFIGURATIONS

The BPS brane configurations in supersymmetric M-brane M5:T 10546 = €, )
backgrounds can be obtained by the following intersection
rules[20]: In the M2-brane background, an M2-brane probe
can preserve 1/4 supersymmetry only without overlap and an M2:T g = e, 3)

M5-brane probe can only do so in the string intersection. In

the M5-brane background, an M5-brane probe can preserve
1/4 supersymmetry only in string or three brane intersections
and an M2-brane probe can only do so in the string intersec- M5’ :RI g1p34R Te=e, 4
tion. These situations give various brane configurations and

residual supersymmetries.

In this section, we construct the brane configurations cor- ﬁj;r%e: €, (5)
responding to three-dimensional gauge theories with soliton
solutions. For this purpose we need to count the number of
supersymmetries remaining in the brane configurations. The
cases of our interest are realized by inserting other M2-

branes intersecting the Maranes that give rise to the hyper-
multiplets. After compactification or" (the symboly indi-
cates the 11th direction, 1@nd T,-duality (the subscript 2
stands for the direction of T-dualityf the brane configura-
tions, these are reduced to the type IIB brane configurations.
The M2-branes are transformed to a D1-brane or a D3-brane

M5: Loi7sg €= €, (6)

where the rotation matrix for the second Mbrane is pa-
rametrized by the four angles as follows:

which correspond to the vortex or domain wall solutions, R=eXp{fF2h+ fr37+ et 2Tt )
respectively. We now explain each case separately. 2 2 2 2

First let us consider an M2-brane and MEanes between

two M5-branes with relative angles and another-bane in
the directionsx’> andx? (the superscripa indicates one di-
rection out of 7, 8, and 9 according to the intersection pules
which corresponds to the D1&) string embedded in
D5(012789-brane in type 1IB string theory. The world vol-

Sincer()lz. .9y = 1 and SOF017891 :F016F012345, the con-
dition (6) is a redundant one. So we must solve just Egs.
(2)—-(5) simultaneously as functions of the four angles
0, l/l,(,D, and P Since RF012348712R2F012345, Eq (4) be'

umes of these branes are given by comes
M5: (012345, (R°~1)e=0. ®)
M2:(01/6]), By a straightforward calculation, we obtain
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The gamma matrices appearing in the spinor constraints commute with each otherlgxgef@ince the square of the
matrices is unity and the traces of their products vanish, we can arrange these matrices by the same method g& 18|Refs.
in the following forms:

L o12345= diag 136, — L1g),

Iy 37=diag1lg,—1g, ...),

T, e=diagly, — 14,14, 14, .. .),

[yyso=diag1,,—1,,1,,—1,,1,,—1,,1,,—1,, ...), (10
wherel, denotes ther X n identity matrix, and the rest of Eq9) is determined by the products of the above matrices. Since
Fo1z..95=1, I'gieis also determined by the products of the gamma matrices ir{1Byas

Tos— 1=—2xdiag0,,1,,1,,0,,1,,0,,0,,1,, .. .). (11)

On the gamma matrix bas{g0), we have the following expression:

0—y—¢— 0—— o+
w) mn(w 1,

2_ — . .
R°—1 2RF2h><d|a4 sm( > >

12,...>. (12)

Considering the above expression Bf;s, the remaining pearing in Eq.(9) all commute withI"y,, and we have no
supersymmetry is now determined by the sin functions ofurther constraint. The other is when the gamma matrices in
the four angles in the first, fourth, sixth, and seventh blockg€=q. (9) do not commute withy,,, for which we have an

of the R?—1 matrix. We summarize in Table | the BPS additional condition on the spina.

brane configurations at angles and the various supersymmet-

ric theories in three dimensions obtained in Héfl in the [R2 T gpa]e=0. (13

absence of thﬁAZNhere we indicated only one representa-

tive in each case sind8,7-, (4,8-, and(5,9-planes are on  of course, in this case, the gamma matri€gs, cannot be
an equal footing with each other. simultaneously diagonalized.

Now we considithe BPS configurations constructed by et us consider the first case. From express@nwe see
M2-branes such as M the M-brane backgroun€l). We  that we must put at least two angles to zero, resulting in
require that Eq(5) should not completely break supersym- two-angle cases. There are six possibilities for the gamma
metry. Note that the simultaneous solution to E§sand(8) matrices to commute with'y,,. By examining each case
can induce a new constraint depending on their commutativseparately, tha direction is uniquely determined. The result
ity. One solution is obtained when the gamma matrices apis the following:

106003-3



LEE, LEE, OHTA, AND YANG

PHYSICAL REVIEW D60 106003

TABLE |. Brane configurations at angles and various supersymmetric theories in three dimensions.

Angles Condition SUSY d=3 M5’

1 0(24) 6=0 : N=4 NS5(12345)

2(1) ¢(48) p(59) p=¢ i N=2 NS5(12331,031,)

2ii) 6(24),p(59) p=10 i N=2 (p.9)5(1234%1,)

3(i) #(37),¢(48),p(59) p=y+e i N=1 NS5(1231, 51,0515+,

3(ii) 6(24),¢(48).p(59) p=0+¢ % N=1  (p,a)5(123¢1.0516.0)

A 0=v—¢=p %5 N=1 (pq)5(AZ3I0E1.[5]y o)

4G)  0(21),4(37),¢(48),p(59) O=—p.Y=¢ s N=2 0 (pg)5(1 31,041,051 )

Aiii ) O=y=¢==p 1§ N=3  (pq)5(172],[21M3]-0)
0=uy=0 =7), 6O=¢=0 =8), 0— 0+

¥=0 (@=7 ® (@=8) R2—1=2RF2hdiag< sinTplg,sinTplg, co ]
0=p=0 (a=9), ¢Y=¢=0 (a=9), (18)
y=p=0 (a=8), ¢=p=0 (a=7). (14)  For =p this case also reduces the supersymmetrysby

As an example, let us consider the =0 (a=7) case.

In order to find the solution, it is convenient to choose maxi-

mally diagonalized basis different from Eq4.0) and(11):
[ o12345= diag Ly6, — 11¢),
F4859: d|ag18,_ 181 e ),

Ioe=diag 1y, — 15,14, - 14, .. .),

compared with the configuration without the Nb2ane[case
2(ii) in Table I and this also gives a BPS stdgevortey in
three dimensions. For the remaining cases in @¢), we
also obtain similar vortex solutions.

Next we consider the second case. Our interest is in the
four-angle cases corresponding/tt=2 or N=3 supersym-
metry [cases 4i) and 4iii) in Table ) because BPS states
are possible for these cases. For definiteness, let us choose
a=9 and the rotation matriR® as

F027:diaglz,_12,12,_12,12,_12,12,_12, .. ) RZ:EXHQ(FZE]_F59)+l;[/(r37+r48)}' (19)
15
19 By a straightforward calculation, E¢13) becomes
Using Egs.(15), we can rewrite Eq(9) as
_ 1+T 550
) o—p Cotp [R?Topgle=Tppd € 40F2h_1)RZT€:0a (20
R%2—1=2RI 44 dia sin“5—1g,sin"——1, ... |.
(16)  which reduces to the following equation:
On this basis, the first conditiof2) destroys the second 16 1+T 5459
components of the Killing spinor, and we have to examine 5 €T (21)

the conditions(3) and (8) for the first 16 components. For
¢=p the remaining supersymmetry is reduced byom-
pared with the configuration without the M#anes[case

if! 9#nw/2 (neZ). In the four-angle case(#), one can
directly check using Eq$10) and(11) that, if the constraints

2(i) in Table ) and this brane will correspond to a BPS state(2), (3), and(8) are imposed on the spinet the number of

(a vortey in three dimensions.
Another example is to choose the angles @és ¢
=0 (a=9). We can again arrange the matrices as

Uo12345= diag 116, — 116),
I';ys0=diag1g,—1g, .. .),
Fye=diag 1y, — 14,14, 14, .. .),
Fpo=diag L,,—1,,1,,—1,,1,,
-1,1,,-1,,...), (17)
Using Eqgs.(17), we can rewrite Eq(9) as

unbroken supersymmetries is A€ 2). The condition(21)
does not produce further constraints. Interestingly, however,
the N=3 supersymmetry 6=, case 4iii) in Table [] is

!In the case ob= ¢, the M5 -brane is parallel to the Mbrane in
the limit 6— 7/2 corresponding toc= — (1/gs)tanf= — p/gq— .
When k—o, the vector multiplet decouples and the theory be-
comes a theory of a free massless hypermultiplet with4 super-
symmetry[6]. It turns out that the supersymmetric pure Chern-
Simons system discussed in Ref&1,8] indeed corresponds to
another limit, i.e.Lg— 0 with « fixed, whereLg is the length of the
D3-brane in thexS-direction. Thus we consider here only the case
of 6+ m/2.

106003-4



MAXWELL CHERN-SIMONS SOLITONS FROM TYPE IIB.. .. PHYSICAL REVIEW 50 106003

further broken toA/=2 by the condition(21). Since the Of course, for the more general ca&8), there are three
gamma matrix o, squares to unity and is traceless, its ei- possibilities for theb direction. The results for each case are
genvalues must be: 1 and the multiplicities of these eigen- the following:

values should be the same. Moreover, since the traces of

products with the gamma matrices in the spinor constraints

vanish, the condition5) further breaks supersymmetry at Yy=¢=0 (b=5), y¢Y=p=0 (b=4),
least by half. Consequently, the conditi@) maximally pre-
serves the\V=1 supersymmetry and so the Mi2ane will e=p=0 (b=3), (29)

correspond to a BPS state vortey in N=2 or N=3 su-
persymmetric theory. This is consistent with the field theorya
results in[8,9,11,13.

For other cases with the rotation matrix different from Eq.
(19), the directiona of a M2-brane should be differently

nd the condition(28) is generalized to

chosen. For example, if we take M2:Tgpye=€. (30)
2__ _ —
R*=exg{6(T'2y —'a7) + #(l'ag* T's)}, (22 i we take the direction of the M®rane to satisfy the con-

thena=7 and similar solutions can be obtained. dition (2.9)’ all the gamma matrices appearing in the spinor
For the purpose of constructing nontopological vortices,conStr"’“nt.S commute with each other and so can be swpulta-

| i her Mar i th directi neously diagonalized. We thus see thgt, can be taken in

.et us consi ianot er. Marane in the k. ) |r§ct|ons, the same form a¥k 5,9 in EqQ. (17) and the conditior{27) no

instead of Fhe MZbrane n Eq.(_l), and then' rotqte it by the longer breaks supersymmetry. Thus the -bane totally

same rotatiorR in Eq. (7) (b indicates one direction out of 3, preserves theV=1 supersymmetry, giving a BPS state.

4, and 5 according to the intersection ryle$he Killing On the other hand, iV=3 theory with 6= == —p,

spinor condition for this brane is given by the condition(27) breaks the supersymmetry fraii=3 to
N=2 as in topological vortices. Since the conditi¢28)
further breaks the supersymmetry by half, the-Mane to-
instead of Eq(5). Note that the rotation in the planes con- tally preserves th&/=1 supersymmetry, again giving a BPS
taining neitherb nor § does not affect the MPrane. What State in\V’=3 theory. Since the M®ranes will be interpreted
we need for our purpose are not F-strings but D-strings oRS nontopological vortices, the above results are consistent

their composites, so the angteneeds to be nonzero. We With the fact that nontopological BPS vortices can exist only
now seek simultaneous solutions to E®), (3), (8), and for x#0, i.e.,6+0.

M2:Rl g, R le=e, (23

(23). For definiteness, let us take=5. Then Eq(23) is cast Finally we consider the other possibility of inserting the
into second M2-brane along the® andx® directions, which cor-
responds to the D3-brane in type IIB string theofQ@f
Riproshe:e, (29 course, we can also choose the extended directions of the

N M2'-brane to be X3, x’) or (x*, x®) instead of &>, x°)
and, from the condition$8) and (24), we get another con- according to the intersection rulgshe condition(5) must
straint be replaced with the condition

(Rj,—1)R5,I'os4€=0, (25)
where M2":T pse=€. (31

R§p=exq0F2h+stg), Rj.=exp(yl s+ ol 49).
(26)  cContrary to the cas¢l), I'gso cOmmutes with the gamma
matrices in the spinor constraints. All the gamma matrices

can be simultaneously diagonalized and arranged as Egs.
(10) and(11) and

Since the matriceRy,, R, andl'gs, are nonsingular, the
condition(25) can be reduced to the following form:

(R5,—Ry7)e=2I;(sin6 cosp—cos@sinpl ;50 e=0. .
27) lose=diag1,-1,1-1,1-1,1-1,1-1,1-1,1~1,1,

In N'=2 theory, in which we put rotation angles not in- —1.-). (32
volving b andb directions to zero and= — p, the condition
(27) is essentially equal to Eq8) and so a redundant one. The supersymmetry is further broken by half by the
Using Eq.(8) or (27), the spinor constraint24) reduces to M2’-brane and so the brane may be a BPS dmtdomain

the following condition: wall) in three dimensions.
L We have exhausted the M2-brane configurations in the
M2:T g5 e=€. (28) presence of the M-brane backgrouf without breaking

106003-5



LEE, LEE, OHTA, AND YANG PHYSICAL REVIEW D60 106003

supersymmetry completely, corresponding to BPS sfaltes. D-string can carry electric charg@, proportional to mag-
the next section, we will realize the BPS soliton states imnetic chargeQ,,: Q.=|«|Qn.
three-dimensional field theories in terms of these

M-configurations. A. Maxwell-Higgs vortices

Hanany and Witten explained the mirror symmetry in
IIl. MAXWELL CHERN-SIMONS VORTICES three dimensions through the SLZ2, duality of type IIB
In this section we will analyze the Maxwell Chern- Superstring[3]. They considered the supersymmetric con-
Simons vortices via type 1B brane configurations. These ifiguration with N D3-branes in (1, 2, 6) directions sus-
turn can be obtained from the M-brane configurations conPended between two NS5-branes in (1, 2, 3, 4, 5) direc-
structed in Sec. Il after compactifying the M-configurationstions with definite values of thex® coordinate. This
along the 11th direction and then applying-duality [7]. In  configuration givesV=4 supersymmetric theory in three di-
the process, the number of unbroken supersymmetries is prB€nsions. We can also construct gauge field theories with
served. matter fields if we insert otherN; D5-branes in
From Table I, we see that, if we set one of the four angled1, 2, 7, 8, 9) directions preserving=4 supersymme-
0,4, ¢,p in 3-() or 3ii) to zero, supersymmetry is enhancedry.- These configurations explaitv=4 SU(N.) super
from N'=1 to N'=2, while, in the 4i) and 4ii) cases, it is Yang-Mill theories with N hypermultiplets. This may be
not enhanced, for example, in th&—0 limit where the 9eneralized by rotating the second N&&ane by suitable
Chern-Simons term vanishes. Thé=3 case is quite special angles. . . . .
since, in this case, the four angles should be equal. First Iet'us consider the brane configuration corresponding
As noted in Sec. I, in the zero- and two-angle cases, thert® case | in Table 1 where two NS5-branes are parallel to

is a possibility to introduce the MBrane preserving half of (ia:h other, i.e.,0t=. 'l’;p: ¢=0. TTLS corre_stﬂgndhs tov'
the supersymmetry and extended to th@):lane. In type supersymmetric SU{;) gauge theory withN, hyper-

; ; _ ltiplets. Here we discuss only tie=1 andN;=1 case.
[IB string theory, this brane is just the D1-brane along theMu . - . o : .
a-direction and, in three-dimensional field theory, this will 1 1iS configuration is depicted in Fig(d in which one D3-

: : .brane in the directiori126) is suspended between two NS5-
correspond to a BPS vortex solution as we will see. In addi; . ) .
tion, wg have shown that the four-angle cajgkgs) and 4iii) branes 'n(1.2345 and. |nte_rsects with a _D5-brane Gm27896'
cases in Table)lalso contain the spectrum of supersymmet-T.he Same 1S dravyn n F!g.(kl) yvhen itis seen from the
ric BPS vortices. As will be shown, this fact is consistentdiréction. From this configuration, we get1) gauge theory
with the field theory resulf13,16,8,9 'that theN/=2 and\/ with a massless flavor in the fundamental representation with

=3 Maxwell Chern-Simons theories admit topological as"® Fayet-lliopoulodFl) tgrms. .
well as nontopological vortex solutions. The N=4 vector multiplet consists of aiv=2 real vec-

; : P tor multipletV and a chiral multipletb. (For supersymmetric
As sh Ref[21], th f - h .
typeSIISB %V\g,:rlig ise [21], the tension of §;,qp)-string in the gauge theories, see, for example, R28].) In A’=2 super-
space[12], the vector multipletV is composed ofA, (u
=0,1,2), which are the gauge fields on D3-brane world vol-

1 5 qg ume, andX; which corresponds to th&; component of the
Tia,.0)= P (91 +02x)°+ —, (33 four-dimensional gauge field. The chiral multiplét con-
s 9s tains X, andXs, which correspond to strings describing fluc-

tuations of the D3-brane in the transverse directions
where y is a constant background of the type IIB Ramond-(x*, x°). In addition, there are hypermultiplets consisting of

Ramond(RR) scalar. In the §,q)5-brane background, the Q and@ in the fundamental representation, which originate
instanton coupling on the D3-brane world volume inducesrom the fundamental strings stretching between the D5- and
the Chern-Simons coupling= — x as discussed in Reff7].  p3-branes. Using these notations, we can write down the

In this background, the integer charge is shifted by an  A/=4 supersymmetric action in the Coulomb branch:
arbitrary amounjy due to an analogue of Witten's effect that

the electric charge of a monopole is shifted when the theta 1
angle ¢ is switched on[22]. Thus, althoughq;=0, a SN=4:§

1
jd3xd4eqﬂq>+§“ d3xd20W“Wa+H.c.)

_’_f d3xd40(QTeZVQ+Qe72V6T)

20One may also consider an M-wave in 11 dimensions, in which
case the Killing spinor condition By, e= €. The M-wave solution
may give a D-string in type IIB string theory because it reduces to 1
a DO-brane in type IIA string theory. However, one can see that this + E
solution does not preserve supersymmetry in the M-brane back-
ground(1). In this paper, we have not considered M5-brane probes
in the M-brane backgroun€l). According to the intersection rules WhereW* is the field strength superfield for the real spinor
[20], possible M5-brane probes preserving 1/4 supersymmetry argauge superfield“(x,6) and « is the three-dimensional
M5(26abl) and M5(26789), whera,b=7, 8, 9 (@a#bh). spinor index.

J d3xd200dQ+ H.C.), (34)
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NS5 NS5’ NS5’
X5
D5 X5
s
& D3
T D3 f; .................... .ﬁ. ............. I
¢ D5 *7
<7 fs«f %
FIG. 1. Topological vortices in
(a) (b) Maxwell-Higgs theory.(a) or (b)
is for the Coulomb phase and)
NS5 NS5’ NS5 NS5 or (d) is a vortex solution in the
Higgs phase.
Ds
D3 P
R " ’/ D3
gi‘z ------ p S du D5
S D D3/ L2

(c) (d)

If we turn on FI couplings for theéV'=4 vector multiplets  which break either supersymmetry or internal symmetry. Be-

Vand®, cause the second NSbrane is rotated in theg8,9)-
directions, the 5-brane shifts in these directions can be com-
pensated by the D3-brane shifts in thg5-directions, so

' that it is possible to preserve both supersymmetry and inter-

(35) nal symmetry. On the other hand, the shift in the relative

position in the 7-direction of the NS5- and NSBranes cor-

the scalar potentidl in the action(34) with Eq. (35) is given ~ responds to a real FI term.

by In N'=1 superspace, the mass terms for the hypermultip-

let are given by

W2
SFlz_VZJ d3xd*ov — EJ d3xd?6d +H.c.

g ~ 9° ~
U= (lal*~[al?-v*?+ = ag-w?? o ua s
SM: J' d°xd 0(K4X4+ K5X5). (38)

+(|al?+]al?) (X3+|4[?). 36
(la+al o+ 1419 (30 In Eq.(38), | k4| and|«s| correspond to masses for the scalar
This potential allows only a symmetry broken vacuum: fields X, and Xs. These masses originate from the relative
rotations of the NS5brane in the (4, 8)- and
lal>—[ql?>=v? qg=w? Xz=¢=0. (37 (5, 9)-directions.N=2 supersymmetry requires that the
masses of the scalar fields should be equal to each other, i.e.,
Note that the FI terms come from the relative positions in thex, = — x,=m. When this relation is satisfied, E@®8) can be
(789-directions of the NS5- and NSkranes. The peculiar \ritten as
fact is that, if the FI couplingv for the complex scalar field
& is nonzero, the hypermultiplet should have all nonzero
vacuum expectation values.
Next we consider the brane configuration corresponding
to 2<i) in Table | where the NS5hrane is at anglé= ¢ in '=2 superspace. We thus see that the shift of the scalar
=0 andp= ¢. This configuration was considered by the au-component ofb [corresponding to the D3-brane shifts in the
thors of Ref.[4] and corresponds t8/=2 supersymmetric (4,5-directiond cancels the second terninear in ®) in
U(1) gauge theory with a massless flavor in the fundamentdEq. (35 and also produces mass terms for the hypermultip-
representation with no FI terms. This configuration is alsdets from the last term in Eq34). As a result, there exists a
depicted in Fig. {a) in which one D3-brane in the direction phase in which the gauge symmetry is unbroken. This is
(126) is suspended between NS5 12345 and the what we mean when we say that the second terms irfi3=g.
NS5'-brane in (12B3],[5],) and intersects with a D5- are not FI terms, and is consistent with our above brane
brane in(12789. Note that the masses of matter with flavors Picture.
correspond to the position differences(8#5)-directions be- Since the only mass scale in this theoryg& we see,
tween the D3- and D5-branes. For this theory, all the termé&om the action34) with Eq. (39), that the mass of the chiral
in Eq. (35) are no longer what would be called FI terms, multiplet® is given by|mg?| and the hypermultiplet®, O

f d3xd?6(md?+H.c.), (39
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FIG. 2. Topological vortices in
(a) (b) Maxwell Chern-Simons theory.
(@ or (b) is for the Coulomb
phase andc) or (d) is a vortex

NS5 solution in the Higgs phase.

(c) (d)

and the vector multipleV are massless. For simplicity, we ticity n is just the number of D-strings. Sinc€ has the
take the rotation angle = /2. Since then the mass of the dimension of mass and is related to the tension of the
chiral multiplet ® goes to infinity, the chiral fieldD de-  stretched D-string, we can interpret it as the mass of a vortex.
couples from the theory and can be set to zero, but thigrom the brane configuration in Fig(cl, we see that the
simplification does not affect our results. strings can freely move on th@, 2-plane, so the transla-

If we turn on the FI coupling for the vector multiplet by a tional zero modes of tha D-strings are 2. Thus our iden-
position difference between the NS5- and N&fanes in the tification is consistent with the field theory results.
7-direction, this introduces a linear superpotential in the ac- Note that the chiral multiple® is neutral with respect to
tion (34) like the gauge group U(1) although it is charged under the

U(1),45 rotation group in the X*, x°)-directions. Thus the
Se= —vzf d3xd*gv. (40)  presence ofb in the theory does not seriously change the
story on the existence of the soliton solution. If we sgt

—ks=m=0, the vortex solutions obtained above can also
be considered as the BPS vortices\is- 4 theory. This class
of solutions should be obtained from the BPS solutions in
four-dimensional\V/=2 QED.

From the action$34) and(40), the scalar potentidl can be
easily read off as

g° - -
U=Z(lalP=[al?=v??+X3(lal*+[al®). @D

The potentialU allows only a symmetry broken vacuum: B. Topological and nontopological Maxwell Chern-Simons
vortices
lal=v, [a]=0, X3=0. (42) Here we will analyze the brane configurationgi2in

Table I with and without an additional MBrane extended to
(2, 9)-directions. The corresponding type |IB brane con-
figurations are depicted in Fig. 2.

Let us identify the three-dimension&l=2 supersymmet-

It is well known that the symmetry broken vacuyn®) ad-
mits topological Nielsen-Olesen vorticE®,25,13, where it
is shown that the mass ofvortices is 2rv2n and the num-

ber of zero modes isr®, corresponding to the positions of = - X ) ; .
vortices. Now we will identify these BPS solutions with the 1¢ field theories realized on the D3-brane. Consider first the

type IIB brane configurations. configuration in Fig. 2a) in which one D3-brane in the di-
Consider the Higgs brancli4? of the model (34) rection(126) is suspended between an NS5112345 and a

sketched in Figs. (t) and Xd). As shown in the figure, the (p.q)5-brane in (123#5],) and intersects with thal; D5-
right-hand NS-brane is shifted by? along the 7-direction. branes in(12789. On this configuration, we get(l) gauge
This shift introduces the FI D-terr@#0). Let us further con- theory with massles; flavors in the fundamental represen-
sider additional D-strings extended to the 7-direction to-tation with no FI terms(Here we will takeN;=1 for sim-
gether with the brane configuration in Fig(cl Since the plicity.) Note that the masses of hypermultiplets correspond
D-strings can end on the D3-branes, we can obtain D-string® the position differences in the845-directions between
with finite length, which means finite energy. We havethe D3-brane and the D5-branes and the FI terms come from
shown in Sec. Il that these D-strings preserve half the supethe relative positions in thé78)-directions of the NS5-brane
symmetry, and so should correspond to BPS states. Here vend the 0,q)5-brane. These FI terms are those with the
claim that we can identify the D-strings with the topological coefficientw? in Eq. (35). In fact, we will see that theories
Nielsen-Olesen vortices in Maxwell-Higgs theory. The vor-only with the first term have a symmetry unbroken phase.
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In N=2 superspacgl2], the vector multipletv is com-  From the action$43) and(44), the scalar potentidl can be
posed ofA, andXs corresponding to thé; component of  easily read off as
the four-dimensional gauge field and the chiral multiplet o
containsX3 and X,, which correspond to strings describin _ 2 =12 2 2 2/ 120 (12
fluctuations of the D3-brane inp the transvgrse directio?]s U= (lal*=[al* v+ xXs)*+ X(lal*+[al). (49
(x3, x%. There are also hypermultiplets consisting@&nd
Q in the fundamental representation. Similarly to Maxwel
Higgs theory in Eq(34), we can write down theéV=2 su-
persymmetric action in the Coulomb branch for the brane
configuration in Fig. 2a) [13]:

I- The potentialJ allows both symmetry broken and unbroken
vacua:

symmetry broken phase: |q|=v, [q|=0, Xs=0;

(46)
Su_pm fd3xd40<I>T<I>+ 1Uoﬁxdzaw“w +H c) ~ v?
N=2 9 2 T symmetry unbroken phase:|q|=|q|=0, X5=7.
o (47)
+f d®xd*6(Q%e?VQ+ Qe 2VQ") _ .
Notice that the linear terrd4) allows a symmetry unbroken
1 vacuum and this agrees with the brane picture that the shift
T _( f d3x 2 HODQ+ H.c.) of the 5-branes in the 9-direction is compensated by the D3-
V2 brane shift in the 5-direction. It is well knowii3,16 that
1 the symmetry unbroken phase admits nontopological BPS
— 2| dBxARO(kaUW. — keX2). 43 mylusollton s_olut|ons, whllg thg symmetry broken phase ad-
2f (U Wo— K5X5) “3 mits topological BPS multisoliton solutions. Now our next
goal is to find the type 1B brane realizations for these soliton
In Eq. (43), ko and k5 correspond to masses for the gaugesomtlons'
field A, and the scalar fielXs. These masses originate from 1. Topological vortices

the simultaneous rotations of thep,()5-brane in the ] )

(2, )- and(5, 9-directions. The\'=2 supersymmetry re-  First we go to the Higgs branct#6) of the model(43)
quires that the masses of the gauge field and the scalar fiekketched in Fig. @). As shown in the figure, the right-hand
should be equal to each otiite., ko= k5= «. Since we set D3-brane is slid by ? along the 9-direction. This introduces
the hypermultiplet masses and FI couplings to zero, the onl{€ Fl D-term(44). Since the transverse fluctuations of the
mass scale in this theory g. In fact, from the actior43), 3-branes along th€3, 4)-plane are highly suppressed, the
we see that the mass of the vector multiplets given by  chiral field @ decouples from the theory and can be set to

. ~ . : . In this Higgs branch, the theory is mapped to e
|xg?| and the hypermultiplet®, Q and the chiral multiplet  2°'° _ map
® are masslessFor simplicity, we fix the location of the =2 Maxwell Chern-Simons theory studied in R¢fL3],

; ; 2
D3-brane in th€3, 4)-plane and put the chiral multipl€t to where the mass af vort|ces.|s 2rv*n and .the number. of
7er0. zero modes is 2 corresponding to the positions aofvorti-

If we shift the positions between the NS5- and ces. . . L
(p.q)5-branes in the 9-direction, this introduces a linear Let us consider the D-strings extended to the 9-direction

; ; . together with the brane configuration in FigicR We can
term in the actior(43): now apply the similar logic as that in Sec. lll A. Since the
D-strings ending on the D3-branes have a finite length, the

N D-strings have a finite energy proportional to their length.

Spi=—V f d°xd™ov. (449 We have shown in Sec. Il that these D-strings preserve half
the supersymmetry, and so correspond to BPS states. Thus
we can identify the D-strings, i.e., (0,1)-strings, with the
3 hat th i __y — _ola is di- topological vortices in the Maxwell Chern-Simons theory.
Note that the coupling constart=—(1/gs)tan0=-p/q is di-  \ 56 that, in the presence of the axion figid the tension

. 2 .
mensionless, so ou Corr?Sponds tod/g n [9.13,18. In Refs. formula (33) implies that the vortex also carries electric
[9,13], the supersymmetric pure Chern-Simons system was Obéhar eQ, proportional to magnetic charg® ie. Q
tained by taking the limitc—o with the ratio x/g? fixed. In our 9€Re Prop g om, 1€ Le

notation, their limit corresponds ta=fixed and g?>—~. Since =«Qm, as an analogue of Witten's effect. Field theoreti-

1/g?=L4/g., supersymmetric pure Chern-Simons theory can pecally, this is just the Gauss law constrajnb,16. The vor-

obtained by taking the limits—0. As discussed in Ref7], since  UCity n is just the number of D-strings. Sina€ has the
x6-dependent Kaluza-Klein modes can be ignored as long as dimension of mass and is related to the energy of the
<1/g,, the low-energy approximation in the three-dimensionalStretched D-string, we can also interpret it as the mass of a
gauge theory should be valid if the string coupling constanis ~ Vortex. From the brane configuration in FidcP we see that

sufficiently small. the strings can freely move on tlig, 2)-plane, so the trans-
“Here and in what follows, we omit factors like X4associated lational zero modes of the D-strings are &. Thus our iden-
with « for simplicity. tification is consistent with the field theory resylis,25,13.
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2. Nontopological vortices

Next we consider the symmetry unbroken phesg. We

summarize the corresponding brane configuration in Fig

3(a). The D5-brane is lifted up along the 5-direction o/ x
relative to the D3-brane, which gives the field a vacuum
expectation value as in E¢47). Then Eq.(45) shows that it
also induces the mass=|v?/«| to the hypermultiplet®Q
andQ.

Here we will focus on thé=5 case out of the Mbranes

PHYSICAL REVIEW D60 106003

FIG. 3. Symmetric phaséa)
or (b) and nontopological vortices
(c) or (d).

(d)

consistent with those in field theory resulis,16.

Here we suggest the type IIB brane configuration in Fig.
3(c) as a possible candidate for the nontopological BPS vor-
tices, where they are represented by D-strings with fluxes
connecting two D3-branéstrom field theory{13,16,25, we
know that the magnetic flusp and electric charg€ of the
nontopological vortices are not quantized=—Q/k
=2m(n+ a), wheren is the vorticity of the solitons and
=n+2 is an undetermined parameter characterizing the
asymptotic behavior of the solutions. It was shown that the

constructed in Sec. Il which may correspond to the nontoponumber of zero modes in the nontopological soliton back-

logical vortices in theories listed agii2 in Table I. Upon

ground is Z1+2a— 2, wherea is the greatest integer less

compactification, the Mirane reduces to either the F-string than «. We interpret the numben as the number of

in the [3],direction or the D2-brane in the

D-strings with fluxes since they can freely move on the
(1, 2)-plane, so the translational zero modes of the

5 ; ; ; ; ~
(2[ 5]14)-directions depending on their world volumes, and ap_strings aré 2n. In Ref.[16], 2a— 2 is interpreted as the

further T,-dual transformation gives the BID1 bound state
in the [ 3],-direction. Since the Mbrane is rotated from"
by 6 in the (2, )-plane, the numbery; ,q,) characterizing
the (F1,D1) bound state satisfies the relati?ngs‘ Ytan(w/2

moduli parameters specifying the fluxes and the U(1) phases
of lumps. If our identification is correct, it should be related
to the moduli parameters of F-string fluxes.

3. N'=3 theories

+6)=—q;/q,. The(F1,D1) bound state has been studied in
Ref.[2] where it has been shown that for the configuration of Next let us consider BPS vortices vi= 3 theorieqd8,9|.
parallel F-string and D-string, the F-string dissolves in theThe supersymmetry analysis in Sec. Il shows that the

D-string, leaving flux behind and the resulting bound stateM2-brane also corresponds to a BPS vortex solution preserv-

i.e., D-string with flux, is supersymmetric. In addition, it has jng 1/16 supersymmetry ioV’=3 theory. V=3 Maxwell
been shown that there is a bound Stl‘ing Saturating the Bpéhern_simons theory was considered in Hg]and the ac-

bound for all @;,9,) with relatively prime q; and gy,
named a {q,0,)-string [21]. In the presence of
(d1,92)-string, the axion field in Eq(33) is shifted by
—01/9y, that is, xy=—k—q41/q9,. Thus the nontopological
vortex also carries electric chargg, proportional to mag-
netic chargeQ,,, i.e., Q.=«Q,,. All these properties are

Note the difference thatp(q) corresponds t¢D5,NS5 charges
whereas ¢ ,q,) to (F1,D1) charges, respectively. That this is cor-
rect can be understood from the fact ti#at 7/2 (q,=0) gives a
pure D-string in type IIB theory.

tion can be obtained from E@43) by further adding mass
terms for the chiral multiplets coming from the rotations of

5The dynamics of the upper D3-brane in Figc)3or 3(d) is not
gauge theory but dual scalar theory. This brane only serves as a
boundary state invisible in the lower D3-brane. On the other hand,
the theory of the lower D3-brane is just our U(1) Maxwell Chern-
Simons gauge theory.

"Although Fig. 3c) shows that the vortices can move along the
x®, the moduli of this motion are massive singé has a finite
interval.
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(3, 7- and (4, 8-planes and FI couplings of the tygd5). decouple; i.e., the theory flows only to the strong coupling
The scalar potentidl for the /=3 case is given by limit. On the other hand, wher—c in N'=3 theory, the
vector multiplet completely decouples and the supersymme-
try is enhanced taV=4. In the limit, the theory flows to a
free theory of massless hypermultiplé€d.

2 =122 ) In three-dimensional Maxwell Chern-Simons theory, it is
+(lal*+[alH) (X5+]#]%). (48 known that there can be BPS domain wall solit§ns,17:

. . topological domain walls interpolating the symmetric and
This pptenhal allows a symmetry broken as well as unbrOI(erf':\symmetric phases, and nontopological domain walls resid-
vacua: 7 ; . .
ing in the symmetric phase. The domain walls constructed in
field theory are finite energy density solutions. As also noted
in Sec. Il, we can introduce the Mzbrane preserving the

g° ~ 9° -~
U= (lal?=[al*= v+ kX5)?+ S [aq+ kh—w??

symmetry broken phasetq|?—[q|?=v?, qq=w?

$=Xs=0; (49) supersymmetry and extended to (5, 9)-directions. In type
IIB string theory, this brane will be a D3-brane extended in
_ w2 the (2, 5, 9)-directions and, in three-dimensional field
symmetry unbroken phasdq|=|q|=0, ¢= P theory, this will correspond to a one-dimensional object ex-
tended along the&?-direction (maybe a domain wall How-
v2 ever, there are some problems in the solution. First of all, the
X5=7. (50 brane configurations do not give finite energy density solu-

tions. For such solutions, we need D3-branes with finite area

The brane configurations for the BPS vorticeshfi=3 1N the (5, 9)-plane. Next, in the cases =1 and V=3
theory, for example, in casdi#) in Table | are essentially theory, there is no explicitly known BPS domain wall solu-

the same as those in Figs. 2 and 3. The D-strings in th#on in field theory whereas the supersymmetr_y analysis in
asymmetric phasét9) and (q;,q,)-strings in the symmetric Sec. Il shows that the M2brane preserves fractional super-
phase(50) Correspond to the topo|ogica| and nontopo]ogica|symmetry. However, note that the domain wall solution can
vortices, respectively, constructed in REF] [where the po- be reduced to a two-dimensional field theory solution as in
tential U is of the casev®=0 in Eq. (49)]. [17]. Then theN’=1 or N=3 theory corresponds to the two-

As discussed in footnote 3, the vortex solutions of Mfe  dimensionalN=(1, 1) or N=(3, 3) supersymmetry, re-
=2 and =3 supersymmetric Chern-Simons systems conspectively. Thus, even in these cases, the’d@ane may
sidered in Refs[11,8] could be obtained by taking the limit correspond to BPS states in the sense of two-dimensional
Lg—0 with « fixed from N=2 and N'=3 Maxwell Chern- field theory.
Simons theory, respectively. Nevertheless, let us speculate on possible brane configu-
rations for the topological and nontopological domain walls.
Consider the configurations in FiggcRand 3a) altogether.
The resulting configurations are sketched in Fig. 4. In Sec. I,

In this paper we have considered M-brane configurationsve have shown that there can be a BPS state represented by
which can be reduced to type IIB branes corresponding t@ D3-brane extended along tk2, 5, 9-directions. The de-
BPS solitons in three-dimensional gauge theories. In a givesired solution is D3-branes confined along the 5- and
M-brane background preservinf=4, 3, 2 supersymme- 9-directions to obtain a finite energy density solution. If we
try, we have found BPS M2-branes preservihg-2,1 su- could have a D3-brane solution with finite area such as the
persymmetry, where th&/=2 case is obtained only fok” triangle in Fig. 4b) or 4(d), its energy density¥, energy per
=4 theory and we have identified the brane configurationginit length, will be given by the area of the triangle, i.&.,
with soliton spectra of the field theories. Although our con-=v*/«, which is coincident with the field theory result
struction via the type IIB branes can achieve nice agreemenid6,17].
with the vortex solutions of field theory, the type IIB brane If it is correct, according to the classification in Refs.
construction of BPS domain wall solutions remains an opeiil16,17, the solution depicted in Fig.(d) or 4(b) will corre-
problem. We will briefly discuss BPS M2-branes which arespond to a topological BPS domain wall since the D3-brane
plausible candidates for the BPS domain wall solutions inis interpolating the symmetric and asymmetric phases. On
field theory. the other hand, the solution in Fig(c} or 4(d) will corre-

The type IIB brane construction in this paper will be uni- spond to a nontopological domain wall since it is residing
versally valid provided that <|,<1/xg?. Thus supersym- only in the symmetric phase.
metric Chern-Simons theories can be obtained by taking the Unfortunately, it seems that such a D3-brane solution in
limit Lg—0 from Maxwell Chern-Simons theories with a type IIB supergravity realizing the BPS domain wall solution
Chern-Simons coupling fixed, since, in the limit, the mass with finite energy density has not been known until now. So
of the gauge boson becomes infinite and so the kinetic Maxat the moment it is difficult to speculate on the problem more
well term is decoupled. Note, in the limit, that, in the case ofprecisely. It will be interesting to look at these problems
Maxwell theory without a Chern-Simons term, the gauge boimore closely from both the field theory side and in string
son remains massless so that the vector multiplet does néteory side.

IV. DISCUSSIONS
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Finally let us briefly discuss mirror symmetf@-6] for
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FIG. 4. Possible domain walls
in Maxwell Chern-Simons theory.
(a) or (b) is topological andc) or
(d) is nontopological.

>

and the brane creation in Ref8,7] including soliton sectors

soliton spectra. Since the mirror symmetry is obtained fromin the theory.

the SL(2Z) transformatiorss of type IIB string theory and a
rotation R that maps the' to x'™* (i=3, 4, 5), the com-
bined operatiorRS exchanges NS-brands.g., NS5-brane
and F-string to D-branes(e.g., D5-brane and D-stringind

In this paper we have only considered Abelian gauge
theories. However, one may also construct the non-Abelian
Yang-Mills Chern-Simons theory and its Higgs phase via
type IIB brane configurationgThe A’'=3 supersymmetric

maps D3-brane to itself. Moreover, the mirror map ex-non-Abelian Chern-Simons theory and its breaking Ao
changes the Higgs and Coulomb branches. Thus the mirrot: 2 is partially constructed ifi19].) We hope that a gener-
symmetry transforms a D-string corresponding to a soliton iralization of the present work will be achieved in the near
the Higgs phase into an F-string corresponding to a fundafuture.

mental particle in the Coulomb phase. This means that the

mirror symmetry exchanges patrticles and vortipg@$]. As
discussed in Refd.7,6], mirror symmetry transforms Max-
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